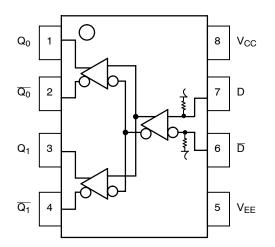
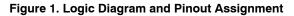
5.0 V ECL 1:2 Differential Fanout Buffer

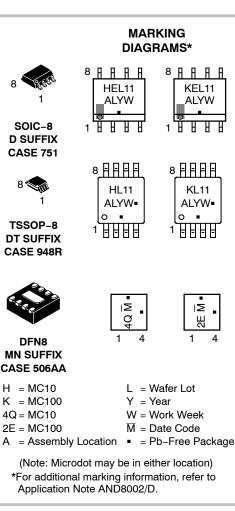

The MC10EL/100EL11 is a differential 1:2 fanout buffer. The device is functionally similar to the E111 device but with higher performance capabilities. The within-device skew and propagation delay is significantly improved over the E111.


The differential inputs of the EL11 employ clamping circuitry to maintain stability under open input conditions. If the inputs are left open (pulled to V_{EE}) the Q outputs will go LOW.

a She The 100 Series contains temperature compensation.

Features

- 265 ps Propagation Delay
- 5 ps Skew Between Outputs
- PECL Mode Operating Range: $V_{CC} = 4.2 \text{ V}$ to 5.7 with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: $V_{CC} = 0$ V with $V_{EE} = -4.2$ V to -5.7 V
- Internal Input Pulldown Resistors
- Pb-Free Packages are Available


Table 1. PIN DESCRIPTION

PIN	FUNCTION
D, D Q0, Q0; Q1, Q1 V _{CC} V _{EE} EP	ECL Data Inputs ECL Data Outputs Positive Supply Negative Supply Exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply or leave floating open.

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Table 2. ATTRIBUTES

Characterist	ics	Value
Internal Input Pulldown Resistor		75 KΩ
Internal Input Pullup Resistor		N/A
ESD Protection	Human Body Model Machine Model	> 1 KV > 100 V
Moisture Sensitivity, Indefinite Time O	ut of Drypack (Note 1)	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		44
Meets or Exceeds JEDEC Spec EIA/J	ESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

ww.DataSheet4U.com

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{c} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44 ± 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. 10EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 2)

		−40°C			25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		26	31	mA
V _{OH}	Output HIGH Voltage (Note 3)	3920	4010	4110	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 3)	3050	3200	3350	3050	3210	3370	3050	3227	3405	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3770		4110	3870		4190	3940		4280	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3050		3500	3050		3520	3050		3555	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 4)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
Ucom	Input LOW Current	0.5			0.5			0.3			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V.

3. Outputs are terminated through a 50 Ω resistor to V_CC – 2.0 V.

4. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 5. 10EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 5)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		26	31	mA
V _{OH}	Output HIGH Voltage (Note 6)	-1080	-990	-890	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 6)	-1950	-1800	-1650	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1230		-890	-1130		-810	-1060		-720	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1950		-1500	-1950		-1480	-1950		-1445	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 7)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
IIH	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.3			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.25 V / -0.5 V. 6. Outputs are terminated through a 50 Ω resistor to V_{CC} - 2.0 V.

7. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 6. 100EL SERIES PECL DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = 0.0 V (Note 8)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		30	36	mA
V _{OH}	Output HIGH Voltage (Note 9)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 9)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3835		4120	3835		4120	3835		4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3190		3525	3190		3525	3190		3525	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 10)	2.5		4.6	2.5		4.6	2.5		4.6	V
I _{IH}	Input HIGH Current			150			150			150	μA
Ucom	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

8. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / –0.5 V.

9. Outputs are terminated through a 50 Ω resistor to V_CC – 2.0 V.

10. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 7. 100EL SERIES NECL DC CHARACTERISTICS $V_{CC} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 11)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		26	31		26	31		30	36	mA
V _{OH}	Output HIGH Voltage (Note 12)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V _{OL}	Output LOW Voltage (Note 12)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 13)	-2.5		-0.4	-2.5		-0.4	-2.5		-0.4	V
l _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5			0.5			0.5			μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.8 V / -0.5 V. 12. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP}min and 1 V.

Table 8. AC CHARACTERISTICS	S $V_{CC} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V} \text{ or } V_{CC}$	_{CC} = 0.0 V; V _{EE} = -5.0 V (Note 14)
-----------------------------	--	---

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency					1.5					GHz
t _{PLH} t _{PHL}	Propagation Delay to Output	135	260	385	190	265	340	215	29*0	365	ps
t _{SKEW}	Within-Device Skew (Note 15) Duty Cycle Skew (Note 16)		5 5			5 5	20 20		5 5	20 20	ps
t _{JITTER}	Random Clock Jitter (RMS)					0.6					ps
V _{PP}	Input Swing (Note 17)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% - 80%)	100	225	350	100	225	350	100	225	350	ps

www.DataSheet.NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit

values are applied individually under normal operating conditions and not valid simultaneously.

14.10 Series: V_{EE} can vary +0.25 V / –0.5 V.

100 Series: VEE can vary +0.8 V / -0.5 V.

15. Within-device skew defined as identical transitions on similar paths through a device.

16. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.

17. V_{PP}(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

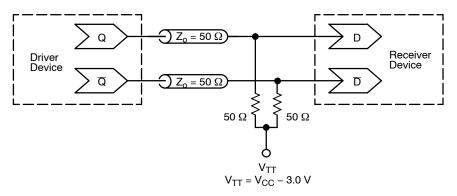
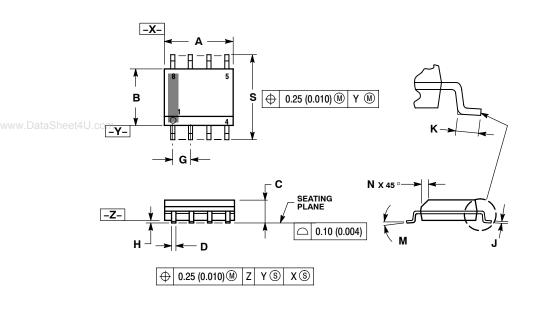


Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

	Device	Package	Shipping [†]
	MC10EL11D	SOIC-8	98 Units / Rail
	MC10EL11DG	SOIC-8 (Pb-Free)	98 Units / Rail
	MC10EL11DR2	SOIC-8	2500 / Tape & Reel
	MC10EL11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC10EL11DT	TSSOP-8	100 Units / Rail
	MC10EL11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
	MC10EL11DTR2	TSSOP-8	2500 / Tape & Reel
v.DataSheet	MC10EL11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
	MC10EL11MNR4	TSSOP-8	2500 / Tape & Reel
	MC10EL11MNR4G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
	MC100EL11D	SOIC-8	98 Units / Rail
	MC100EL11DG	SOIC-8 (Pb-Free)	98 Units / Rail
	MC100EL11DR2	SOIC-8	2500 / Tape & Reel
	MC100EL11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
	MC100EL11DT	TSSOP-8	100 Units / Rail
	MC100EL11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
	MC100EL11DTR2	TSSOP-8	2500 / Tape & Reel
	MC100EL11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
	MC100EL11MNR4	TSSOP-8	2500 / Tape & Reel
	MC100EL11MNR4G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel

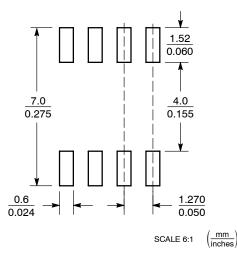

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	_	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	_	Metastability and the ECLinPS Family
AN1568/D	_	Interfacing Between LVDS and ECL
AN1672/D	_	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	_	Marking and Date Codes
AND8020/D	_	Termination of ECL Logic Devices
AND8066/D	_	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

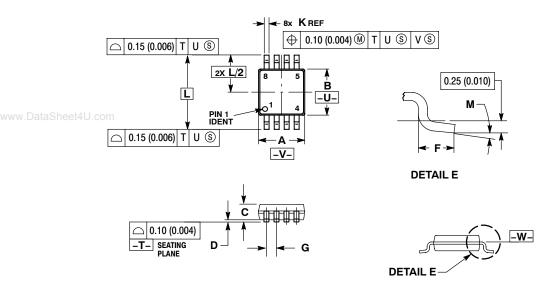
SOIC-8 NB CASE 751-07 **ISSUE AH**



NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) DED SIDE
- PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW OTANDADD IN 274 077
- STANDARD IS 751-07.

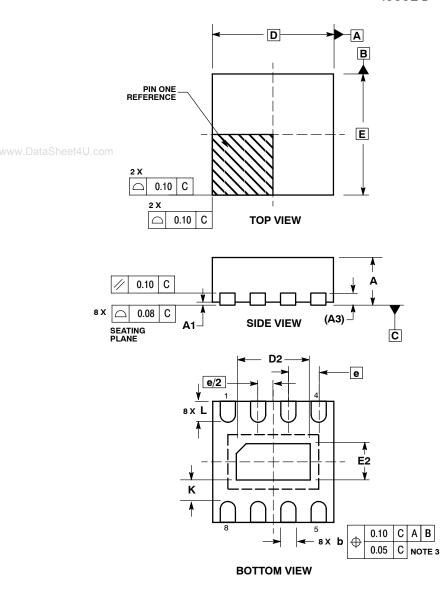
	MILLIN	IETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	7 BSC	0.050 BSC			
н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
к	0.40	1.27	0.016	0.050		
м	0 °	8 °	0 °	8 °		
Ν	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**



- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15
- 0R GALE BURNS SHALL NOT EACEED 0.13 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
C	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
M	0°	6 °	0°	6°

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS. 2

DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN З.

0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED 4. PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
A3	0.20 REF		
b	0.20	0.30	
D	2.00 BSC		
D2	1.10	1.30	
E	2.00 BSC		
E2	0.70	0.90	
е	0.50 BSC		
ĸ	0.20		
L	0.25	0.35	

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC obsent or any liability or the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative